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• Our environment
– ~ 2PB of active data for BaBar experiment, but 

growing still

– Data analysis (mining) done with random reads of 
small blocks (2KB down to 100 bytes)

– A researcher typically has several hundred 
simultaneous analysis streams (in batch)

– And several hundred concurrent researchers are 
active
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• Our problem
– So several thousand simultaneous streams 

of random (unpredictable, readahead
doesn’t help) read requests to disk

– Latency from client request to receiving 
data is 7000 to 12000 microseconds

– Data space is probably 10 to 32TB right 
now, probably 256TB within a few years
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• We need latencies between disk and DDR 
memory latencies

• So why not just buy a very big SMP from the 
usual vendors with massive memory?

• Because we also need a price point between 
disk and DDR memory

• We do not need cache coherency for our 
read-mostly requirement
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• To begin exploring this area, we have built a 
“toy” 64-host 1TB memory cluster using 
commodity hardware with DDR memory

• DDR memory is still too expensive to scale up 
to 10 to 32TB that is needed for a real test

• Using xrootd from the HEP world to test 
usefulness
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• Stress tests done with no client computation, 
just data access

• Measured latency drops to about 200 
microseconds
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SLAC Scientific Computing Drivers
• BaBar (data-taking ends December 2008)

– The world’s most data-driven experiment
– Data analysis challenges until the end of the decade

• KIPAC 
– From cosmological modeling to petabyte data analysis

• Photon Science at SSRL and LCLS
– Ultrafast Science, modeling and data analysis

• Accelerator Science
– Modeling electromagnetic structures (PDE solvers in a demanding application)

• The Broader US HEP Program (aka LHC)
– Contributes to the orientation of SLAC Scientific Computing R&D
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Future Work: Latency Reduction
(All require work with vendors)

• Operating system and TCP stack 
enhancements

• TCP stack bypass
– RDMA

– MPI-optimized service

• Network card driver optimization

• TOE (not good if bandwidth-focused)
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Use of Prototype for SLAC Science

• BaBar
– Host part of the (~30 TB) microDST data
– Access data via “pointer skims”
– Both normal production use and intensified tests 

with ‘real’ access patterns an super-real access 
rates.

• GLAST
– Will require a ~2TB intensely accessed database.  

Have asked to test concepts on the PetaCache 
Prototype

• LSST Database Prototyping
– Proposed tests using the PetaCache prototype
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Development Machine

• Ideas for Storage-Class Memory

• Likely configuration
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Storage-Class Memory

• New technologies coming to market in 
the next 3 – 10 years  (Jai Menon –
IBM)

• Current not-quite-crazy example is flash 
memory
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Flash Memory



13
August  2005Richard P. Mount,   SLAC

Development Machine
Plans

Switch (10 Gigabit ports)

Data-Servers   80 Nodes, each 
8 Opteron CPU, 128 GB memory

Up to 10TB total Memory
Solaris/Linux

Cisco Switch Fabric

Clients   up to 2000 Nodes, each 
2 CPU, 2 GB memory

Linux

Data-Servers  30 Nodes, each 
2 Opteron CPU, 1TB Flash memory

~ 30TB total Memory
Solaris/Linux

PetaCache

SLAC-BaBar
System
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Summary
• Data-intensive science increasingly requires low-latency access 

to terabytes or petabytes
• Memory is one key:

– Commodity DRAM today (increasing total cost by ~2x)
– Storage-class memory (whatever that will be) in the future

• Revolutions in scientific data analysis will be another key
– Current HEP approaches to data analysis assume that random 

access is prohibitively expensive
– As a result, permitting random access brings much-less-than-

revolutionary immediate benefit
• Use the impressive motive force of a major HEP collaboration 

with huge data-analysis needs to drive the development of 
techniques for revolutionary exploitation of an above-threshold 
machine.
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PetaCache

Huge-Memory Architecture 
for

Data-Intensive Science

Richard P. Mount
SLAC

August 16, 2005
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PetaCache Goals

• The PetaCache architecture aims at 
revolutionizing the query and analysis of 
scientific databases with complex structure.
– Generally this applies to feature databases 

(terabytes–petabytes) rather than bulk data 
(petabytes–exabytes)

• The original motivation comes from HEP
– Sparse (~random) access to tens of terabytes 

today, petabytes tomorrow
– Access by thousands of processors today, tens of 

thousands tomorrow
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Prototype (Development) Machine
Design Goals

• Attractive to scientists
– Big enough data-cache capacity to promise revolutionary 

benefits
– 1000 or more processors

• Processor to (any) data-cache memory latency < 100 
µs

• Aggregate bandwidth to data-cache memory > 10 
times that to a similar sized disk cache

• Data-cache memory should be 3% to 10% of the 
working set (approximately 10 to 30 terabytes for 
BaBar)

• Cost effective, but acceptably reliable
– Constructed from carefully selected commodity components
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• Intel/AMD server mainboards with 4 or more ECC 
dimm slots per processor

• 2 Gbyte dimms ($550 each)
• 4 Gbyte dimms ($7,000 each) too expensive this year
• 64-bit operating system and processor

– Favors Solaris and AMD Opteron

• Large (500+ port) switch fabric
– Large Ethernet switches are most cost-effective

• Use of ($10M+) BaBar disk/tape infrastructure, 
augmented for any non-BaBar use

Prototype (Development) Machine
Design Choices
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Prototype Machine
(Operational)

Cisco Switch

Data-Servers   64-128 Nodes, each 
Sun V20z, 2 Opteron CPU, 16 GB memory

Up to 2TB total Memory
Solaris or Linux (mix and match)

Cisco Switches

Clients
up to 2000 Nodes, each 

2 CPU, 2 GB memory
Linux

PetaCache
MICS + HEP-

BaBar Funding 

Existing HEP-Funded 
BaBar Systems
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Client Client Client Client Client Client

Disk 
Server

Disk 
Server

Disk 
Server

Disk 
Server

Disk 
Server

Disk 
Server

Tape 
Server

Tape 
Server

Tape 
Server

Tape 
Server

Tape 
Server

SLAC-BaBar Computing Fabric

IP Network 
(Cisco)

IP Network 
(Cisco)

120 dual/quad CPU 
Sun/Solaris
~400 TB Sun 
FibreChannel RAID 
arrays

1700 dual CPU Linux 
400 single CPU 
Sun/Solaris

25 dual CPU 
Sun/Solaris
40 STK 9940B
6 STK 9840A
6 STK Powderhorn
over 1 PB of data

HEP-specific ROOT software (Xrootd) +
Objectivity/DB object database 

HPSS + SLAC enhancements to 
ROOT and Objectivity server code
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Object-Serving Software

• Xrootd/olbd (Andy Hanushevsky/SLAC)
– Optimized for read-only access
– File-access paradigm (filename, offset, bytecount)
– Make 1000s of servers transparent to user code
– Load balancing
– Self-organizing
– Automatic staging from tape
– Failure recovery

• Allows BaBar to start getting benefit from a new data-access 
architecture within months without changes to user code

• The application can ignore the hundreds of separate address 
spaces in the data-cache memory



22
August  2005Richard P. Mount,   SLAC

Making the Server Perform

• Solve onlyonly the problem at hand
– Avoids high overhead but unused features
–– xrootdxrootd is only a DData AAccess SSystem

– It may look like a file system but it is notnot
one
• Avoids high overhead consistency semantics

• Not needed in write once read many 
applications

This is common sense that is hard to followThis is common sense that is hard to follow
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Basic Cluster Architecture
• Software cross bar switch

– Allows point-to-point connections
• Client and data server

– I/O performance not compromised
• Assuming switch overhead can be amortized

• Scale interconnections by stacking 
switches
– Virtually unlimited connection points

• Switch overhead must be very low
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Single Level Switch

ClientClient RedirectorRedirector
(Head Node)

Data ServersData Servers

open file X
AA

BB

CC

go to C

open file X

Who has file X?

I have

Cluster
Client sees all servers as Client sees all servers as xrootdxrootd data serversdata servers

2nd open X

go to C

RedirectorsRedirectors
Cache fileCache file
locationlocation
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Two Level Switch

ClientClient

RedirectorRedirector
(Head Node)

Data ServersData Serversopen file X
AA

BB

CC

go to Copen file X

Who has file
 X?

I have

Cluster

Client sees all servers as Client sees all servers as xrootdxrootd data serversdata servers

SupervisorSupervisor
(sub(sub--redirector)redirector)

Who has file
 X? DD

EE

FF

I havego to F

open file X

I have
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Example: SLAC Configuration

client machinesclient machines

kan01 kan02 kan03 kan04 kanxx

bbr-olb03 bbr-olb04 kanolb-a

Hidden Details
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Making Clusters Efficient
• Cell size, structure, & search protocol are critical

– Cell Size is 64
• Limits direct inter-chatter to 64 entities
• Compresses incoming information by up to a factor of 64
• Can use very efficient 64-bit logical operations

– Hierarchical structures usually most efficient
• Cells arranged in a B-Tree (i.e., B64-Tree)
• Scales 64h (where h is the tree height)

– Client needs h-1 hops to find one of 64h servers (2 hops for 262,144 servers)

– Number of responses is bounded at each level of the tree

– Search is a directed broadcast query/rarely respond protocol
• Provably best scheme if less than 50% of servers have the wanted file

– Generally true if number of files >> cluster capacity
– Cluster protocol becomes more efficient as it grows
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Cluster Scale Management
• Massive clusters must be self-managing

– Scales 64n where n is height of tree
• Scales very quickly (642 = 4096, 643 = 262,144)

• Well beyond direct human management 
capabilities

– Therefore clusters self-organize
• Uses a minimal spanning tree algorithm

– 280 nodes self-cluster in about 7 seconds

– 890 nodes self-cluster in about 56 seconds

• Most overhead is in wait time to prevent 
thrashing
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Latency (1)
Ideal

Client Application

Memory
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Latency (2)
Current reality for Disk-based Servers

Client Application

Data-Server-Client

OS

TCP Stack

NIC

Data Server

OS

TCP Stack

NIC

Network
Switches

OS

File System

Disk
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Latency (3)
Practical Goal for Prototype

Client Application

Data-Server-Client

OS

TCP Stack

NIC

Data Server

OS

TCP Stack

NIC

Network
Switches

OS

File System

Disk

Memory
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Latency (microseconds) versus data 
retrieved (bytes)
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Throughput Measurements
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xrootd self-organiation

x = 1.9

x = 2.3

86 (first start to last finish)

56 (last start to last finish)

890

7280

Time = 
anx

Time required to self-
organize (seconds)

Number of 
xrootd/olbd
servers (n)


